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ABSTRACT

This research represents the second part of a two-part series describing the development of a prototype

ensemble data assimilation system for the Warn-on-Forecast (WoF) project known as the NSSL Experi-

mental WoF System for ensembles (NEWS-e). Part I describes the NEWS-e design and results from radar

reflectivity and radial velocity data assimilation for six severe weather events occurring during 2013 and 2014.

Part II describes the impact of assimilating satellite liquid and ice water path (LWP and IWP, respectively)

retrievals from theGOES Imager alongwith the radar observations.AssimilatingLWP and IWPobservations

may improve thermodynamic conditions at the surface over the storm-scale domain through better analysis of

cloud coverage in the model compared to radar-only experiments. These improvements sometimes corre-

sponded to an improved analysis of supercell storms leading to better forecasts of low-level vorticity. This

positive impact was most evident for events where convection is not ongoing at the beginning of the radar and

satellite data assimilation period. For more complex cases containing significant amounts of ongoing con-

vection, only assimilating clear-sky satellite retrievals in place of clear-air reflectivity resulted in spurious

regions of light precipitation compared to the radar-only experiments. The analyzed tornadic storms in these

experiments are sometimes too weak and quickly diminished in intensity in the forecasts. The lessons learned

as part of these experiments should lead to improved iterations of the NEWS-e system, building on the

modestly successful results described here.

1. Introduction

Assimilating both high-resolution ground-based radar

and satellite observations into convection-allowing nu-

merical weather prediction (NWP) models has led to

significant advances in the forecasting of storm-scale

precipitation and severe weather events during the last

decade. In the United States, the Weather Surveillance

Radar-1988 Doppler (WSR-88D) network provides a

3D volume of radar reflectivity and Doppler radial

velocity over much of the country, though the near-

surface (0–2 km) coverage is limited to near the radar

sites only (Crum and Alberty 1993). Many studies have

analyzed the impacts of assimilating radar data and

found that both radial velocity and reflectivity provide

information leading to improvements in storm-scale

forecasting (e.g., Dowell et al. 2004; Gao et al. 2004;

Aksoy et al. 2009, 2010; Dawson et al. 2012; Gao and

Stensrud 2012; Yussouf et al. 2013). Assimilating radial

velocity was the focus of several early studies (Snyder

and Zhang 2003; Zhang et al. 2004) with the assimilation

of radar reflectivity becoming an important topic of re-

search in follow-up work (Dowell et al. 2004; Tong and

Xue 2005; Aksoy et al. 2009, 2010; Yussouf and Stensrud

2010; Dowell et al. 2011; Yussouf et al. 2013). Radar

reflectivity may be assimilated by either relating it to a
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latent heat tendency (e.g., Hu and Xue 2007) or directly

relating reflectivity to the cloud hydrometeor properties

of precipitating clouds (e.g., Dowell et al. 2011). The

latter requires advanced cloud microphysics that when

applied can generate an accurate analysis of convection

within the model (Tong and Xue 2005; Yussouf et al.

2013). The goal of many radar data assimilation studies

is to create an accurate analysis of mature convection to

improve forecasts of severe weather events such as high

winds and tornadoes in the 0–1-h time frame. This also

represents one of the key goals of theWarn-on-Forecast

(WoF) project (Stensrud et al. 2009, 2013), and much

work is still needed on this topic. However, capturing

the early development of storms and the near-storm

environment is equally important to fulfill the WoF

goals, but has received somewhat less attention.

One important disadvantage of radar data assimila-

tion is that it does not capture the nonprecipitation

phase of cloud development during convective initiation

nor does it provide much information from the near-

storm environment. Forecasting convection initiation

has proven to be challenging (Kain et al. 2013) and

determining a way to assimilate information relating to

convection initiation is receiving greater interest in the

research community (e.g., Mecikalski et al. 2013). As a

result, assimilating high-resolution satellite observations

has also recently received a high degree of attention

(Vukicevic et al. 2004, 2006; Otkin 2010; Polkinghorne

et al. 2010; Pincus et al. 2011; Polkinghorne and

Vukicevic 2011; Zupanski et al. 2011; Jones et al. 2013b,

2015; Zhang et al. 2013; Kerr et al. 2015). For storm-

scale applications, high spatial and temporal frequency

observations are required, which are currently available

from the imager aboard the operational GOES satellites

(Menzel and Purdom 1994). The imager measures up-

welling visible and infrared radiation that is sensitive to

surface conditions, cloud cover, cloud type, and atmo-

spheric moisture and temperature properties. The ob-

served radiances may be assimilated directly into an

NWP model through the use of a radiative transfer

model (RTM) or through retrieval algorithms, which

derive cloud properties, moisture, and/or temperature

profiles from the raw radiances. The former method is

generally more computationally intensive and has large

uncertainties in cloudy regions (e.g., Zupanski et al.

2011), while the latter is easier to relate to atmospheric

variables, but must also accounts for the uncertainties in

the retrieval algorithms. However, the overall in-

formation content from both methods has been found to

be similar (Migliorini 2012). Jones et al. (2013b) assim-

ilated cloud water path (CWP) retrievals (Minnis et al.

2008a,b, 2011) from the GOES-13 satellite for a severe

weather event occurring on 10 May 2010. Results

showed that assimilating CWP retrievals at 15-min in-

tervals over a 3-h period generated a better represen-

tation of convection and suppressed development of

spurious convection within the model compared to an

experiment that did not assimilate CWP retrievals.

Assimilating both high-resolution radar and satellite

data simultaneously is currently in its infancy. Using

observing system simulation experiments (OSSEs) for a

winter weather event, Jones et al. (2013a, 2014) show

that assimilating radar reflectivity and Doppler radial

velocity with simulated GOES-R Advanced Baseline

Imager (ABI) water vapor sensitive radiances generally

performed better than assimilating each individually for

mesoscale experiments. Jones et al. (2015) extended the

CWP retrieval research conducted by Jones et al.

(2013b) by assimilating CWPusing an improved forward

operator along with assimilating radar reflectivity and

radial velocity using the techniques developed by Zhang

et al. (2004) and Dowell et al. (2004). Jones et al. (2015)

showed that assimilating CWP observations in con-

junction with radar data led to quicker spinup of con-

vection, reduction of spurious cloud cover in actual

clear-sky regions, and improved characterization of the

anvil features of mature convection. Still, these results

were only valid for a single case study. Additional cases

are required to determine how general the improve-

ments from assimilating CWP are and what potential

disadvantages it may have compared to assimilating

radar data alone for various environments.

This research represents the second part in a two-part

series describing the development of a convection-

allowing analysis and forecasting system that assimi-

lates radar and satellite data to create ensemble

forecasts of severe weather events. The first part of this

research (Wheatley et al. 2015, hereafter Part I) ana-

lyzes the impact of radar data assimilation using the

National Severe Storms Laboratory (NSSL) Experi-

mental WoF System for ensembles (NEWS-e) for six

events occurring during 2013 and 2014. All six events

were associated with severe convection and strong tor-

nadoes (Table 1). The 2013 events that occurred on 19,

20, and 31 May in central Oklahoma consisted of su-

percells in a high-shear, high-instability environment

with little convection present prior to initiation of these

storms. The 2014 events are more complex. The 27 and

28 April events are centered over Arkansas and Mis-

sissippi, respectively, with generally lower atmospheric

instability and significant convection ongoing through-

out the morning and early afternoon hours. The final

event on 11 May 2014 occurred in Nebraska where

convection formed along a stationary front, behind

which existed areas of stratiform precipitation and thick

cloud cover. The variety of these cases should allow for a
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more thorough analysis of whether combining satellite

and radar data will be useful and where further research

is required to prevent forecast degradation from un-

wanted interactions between the two datasets.

Section 2 provides a brief overview of the satellite

data and retrieval algorithm. Section 3 describes the

experiment design and the CWP forward operator.

Section 4 describes observation diagnostics for each case

while section 5 discusses the differences between radar-

only and radar with satellite data experiments for se-

lected analysis and forecast times. Finally, section 6

provides concluding remarks.

2. Observations

Observations from three different platforms are as-

similated in these experiments. For Oklahoma-centric

and Arkansas cases, surface observations from the

Oklahoma Mesonet (McPherson et al. 2007) including

temperature, dewpoint, wind velocity, and pressure are

assimilated. All experiments assimilate radar reflectivity

and radial velocity from three radars within the indi-

vidual experiment domain. The mesonet and radar da-

tasets are described in detail in Part I and in previous

ensemble data assimilation studies such as those of

Yussouf et al. (2013), Jones et al. (2015), and Wheatley

et al. (2014). Observations from the GOES satellites are

added as part of this research to assess their potential for

improving storm-scale forecasts compared to assimilat-

ing primarily radar data observations.

The GOES Imager takes multispectral (visible and

infrared) images over the continental United States

every 5–15min (Menzel and Purdom 1994; Schmit

et al. 2001). Cloud properties are retrieved from 4-km-

resolution GOES Imager radiances for pixels classified

as cloudy using the multispectral retrieval algorithm

known as the visible infrared shortwave-infrared split-

window technique (VISST; Minnis et al. 2011). The

CO2-absorption technique of Chang et al. (2010) is also

used in the retrieval of cloud-top pressure (CTP) for thin

cirrus clouds. Cloud-base pressure (CBP) is the pressure

corresponding to the altitude equal to the difference

between cloud-top height and cloud thickness. Cloud

thickness is estimated with a parameterization that de-

pends on the cloud temperature, optical depth, and

cloud water path (Minnis et al. 2010).

The cloud-phase algorithm classifies a cloudy pixel as

being either ‘‘liquid’’ or ‘‘ice’’ based on the cloud-top

temperature and cloud effective particle size informa-

tion. Optically thick clouds containing both liquid- and

ice-phase hydrometeors are generally classified as ice

clouds since the current iteration of the retrieval algo-

rithm is unable to separately classify mixed-phase clouds

(Minnis et al. 2007). Hereafter, liquid water path (LWP)

refers to the cloud water path associated with liquid-

phase clouds only while ice water path (IWP) refers to

the cloud water path for ice- and mixed-phase clouds.

CWP is used when discussing both LWP and IWP si-

multaneously. A full description of the VISST algorithm

can be found in Minnis et al. (2011). The observation

error is defined as a function of both LWP and IWP

values with the lowest errors defined for clear-sky re-

trievals, and the highest for thick and precipitating

clouds similar to those used in Jones et al. (2015)

(Table 2).

Figures 1a and 1b show the visible and infrared

channel images from GOES-13 at approximately

2030 UTC on 19 May 2013 over Oklahoma with the

corresponding retrievals for LWP, IWP, CTP, and

CBP. The visible image shows a linear band of broken

stratus and cumulus clouds extending from north Texas

into southern Kansas. These are generally classified as

liquid-phase clouds with LWP values generally less

TABLE 2. Observation errors for IWP and LWP defined as

a function of the retrieval value.

IWP/LWP (kgm22) Error (kgm22)

,0.025 0.025

0.025–0.2 0.05

0.2–0.5 0.075

0.5–1.0 0.10

1.0–2.5 0.15

.2.5 0.25

TABLE 1. Summary of each of the tornado-producing events studied. Touchdown times and Enhanced Fujita (EF) scale ratings for the

tornado of interest are provided along with the time radar and satellite data assimilation (DA) begins.

Date Tornado Touchdown (UTC) EF scale rating DA start time (UTC)

19 May 2013 Edmond–Carney, OK 2122; 2141 1; 3 1900

19 May 2013 Norman, OK 2300 4 1900

20 May 2013 Moore, OK 1956 5 1800

31 May 2013 El Reno, OK 2305 3 2100

27–28 Apr 2014 Central AR 0006 4 2000

28 Apr 2014 MS–AL outbreak 2051 4 1800

11 May 2014 NE tornado 2050 3 1900
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FIG. 1.GOES-13 (a) visible and (b) infrared satellite imagery over OK at 2030 UTC 19May 2013. Note the

developing convection in central OK and the band of low-level clouds to the east. (c) LWP, (d) IWP, (e) CTP,

and (f) CBP retrievals for 2030UTC.Note that the developing convection is high topped and classified as ‘‘ice’’

and the eastern band of clouds is lower topped and classified as ‘‘liquid.’’
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than 0.5 kgm22 and CTP below 600 hPa (Fig. 1c). Cir-

rus from ongoing convection is present in northwestern

Oklahoma and southern Kansas and developing con-

vection is present along a dryline in central Oklahoma.

These are generally classified as ice-phase clouds and

have IWP in excess of 1.0kgm22 with corresponding

cloud-top pressures above 200hPa (Fig. 1e). CBP is also

higher even in the storm cores where clouds actually ex-

tend from near the surface to the top of the troposphere.

This is a result of the uncertainties in the cloud thickness

parameterization for the thickest clouds.

Satellite retrievals are smoothed to a 6-km grid prior

to assimilation similar to the resolution of the assimi-

lated radar observations; however, the satellite and ra-

dar data remain on different grids. This smoothing

removes unwanted variations like those seen in Fig. 1c

for IWP and also produces a dataset better suited to a

3-km model using the ‘‘2 Dx’’ guideline described by Lu

and Xu (2009). For tall clouds, geolocation errors ex-

ceeding 10km can occur; thus, a parallax correction is

applied where clouds exist. The geolocation of the raw

satellite data and retrievals measures the physical con-

dition of the cloud at its top and not its base, and since

the satellite is not directly overhead, the relative loca-

tions at the surface and aloft are not the same. To correct

for parallax, the retrieved cloud height is used to remap

cloudy pixels to their zenith location above the surface

(Wang and Huang 2014).

The impacts of assimilating CWP retrievals have been

described in detail by Jones et al. (2013b, 2015) and

Jones and Stensrud (2015). In summary, assimilating

CWP retrievals associated with cloud cover increases

the hydrometeor and moisture concentrations in the

model state generating clouds features within the model

where none are present. Depending on cloud height and

thickness, these features can include low-level stratus

fields and upper-level cirrus outflow associated with

strong convection. Assimilating high values of IWP as-

sociated with developing convection also generates a

‘‘warm bubble’’ in the midtroposphere that acts to

further sustain and grow convection in favorable en-

vironments (Jones and Stensrud 2015). Assimilating

cloud-free retrievals acts to reduce hydrometeor and

moisture concentrations and has the effect of removing

spurious cloud cover. The impact on the cloud analyses

directly impacts the radiation budget in the model since

the amount of incoming solar and outgoing longwave

radiation is changed. The radiation schemes within the

model adjust the thermodynamic state to better reflect

this new radiation balance. Assimilating retrievals alone

was generally able to develop and sustain convection

within the model for both real-case and idealized sim-

ulations (Jones et al. 2013b). However, the lack of 3D

hydrometeor and velocity information often resulted in

analyzed storms having a poor organization, which re-

quires that radar reflectivity and radial velocity data also

be assimilated to produce an accurate representation of

convection within the model.

3. Experiment design

a. NEWS-e

This research uses the ensemble data assimilation

system described in detail in Part I. In summary, this

version of the NEWS-e uses the Advanced Research

version of the Weather Research and Forecasting

Model (WRF-ARW), version 3.4.1 (Skamarock et al.

2008), to generate storm-scale analyses and forecasts

for the six severe weather events shown in Table 1

using a 36-member ensemble. Radar and satellite data

are assimilated using the parallel ensemble adjustment

Kalman filter (EAKF) approach in the Data Assimila-

tion Research Testbed (DART) software system

(Kalman 1960; Anderson 2001; Anderson and Collins

2007; Anderson et al. 2009) using a configuration similar

to that employed by Wheatley and Stensrud (2010),

Yussouf et al. (2013), and Jones et al. (2013a, 2015).

The experimental domain utilizes a one-way nest

setup, whereby the parent and nested grids are run

concurrently with information only exchanged at the

lateral boundaries at 1-h intervals once storm-scale data

assimilation commences (with no feedback from the

nested grid to the parent grid). The parent grid has a

horizontal gridpoint spacing of 15-km covering the

continental United States, while the nested grid has a

horizontal gridpoint spacing of 3 km whose location is

event dependent. Both parent and nested domains have

51 vertical levels ranging from the surface to amodel top

of 10 hPa. Initial conditions for the parent and nested

grids are downscaled from the 21-member 0000 UTC

Global Ensemble Forecast System (GEFS) forecast

cycle. The GEFS also provides boundary conditions for

the parent grid. Different sets of WRF model physics

options are applied to each ensemble member to ac-

count for model physics uncertainties (e.g., Stensrud

et al. 2000; Fujita et al. 2007; Meng and Zhang 2008;

Wheatley et al. 2014; Part I) (Table 3). To maintain

ensemble spread, the spatially and temporally varying

adaptive inflation [Anderson (2007, 2009); DART

namelist options: inf_initial 5 1.0, inf_sd_initial 5 0.8,

inf_damping 5 0.9, inf_lower_bound 5 1.0, inf_upper_

bound 5 100, inf_sd_lower_bound 5 0.8] is applied to

the prior ensemble estimate at the outset of each as-

similation step. All members use Thompson’s cloud

microphysics scheme (Thompson et al. 2004, 2008), and
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no cumulus parameterization is applied on the storm-

scale grid.

The mesoscale ensemble is integrated hourly, assim-

ilating conventional observations (Mesonet, METAR,

marine, radiosonde, ACARS, and satellite winds).

Horizontal and vertical localization radii of ;458 km

and 6km, respectively, are applied using the Gaspari

and Cohn (1999) technique. Available mesonet obser-

vations are only assimilated in the storm-scale domain

using a smaller localization radius of 60 km. Data as-

similation on the mesoscale grid ceases when assimila-

tion of radar and satellite data on the storm-scale grid

begins. The rationale for this decision comes from the

planned real-time implementation of this system. The

latency for most conventional observations is 30min or

longer, which means they are not available for data as-

similation system cycling at 15-min intervals. The ex-

ception to this is Oklahoma Mesonet data, which are

provided at 5-min intervals with a latency of 5min or

less. Storm-scale data assimilation of radar and satellite

observations begins near the time of the issuance of the

first severe weather watch associated with each event.

Generally, this occurs an hour or more prior to the de-

velopment of the first reported tornado. For some cases,

the start time occurs prior to convective initiation while

for others strong convection is ongoing in the domain.

Radar and satellite data assimilation cycles at 15-min

intervals on the storm-scale grid until the tornadic event

has ended or until 0000 UTC, whichever comes first.

Reflectivity and radial velocity are assimilated using a

horizontal localization radius of 18 km with a vertical

localization radius of 6 km. Both conventional and radar

observations use an outlier threshold of three standard

deviations from the prior ensemble mean. For both

mesoscale and storm-scale grids, the updated model

state includes 3D wind components, potential temper-

ature, geopotential height, atmospheric pressure, water

vapor, diabatic heating, the cloud microphysics hydro-

meteor mixing ratios and number concentrations, and

finally radar reflectivity.

b. Satellite forward operator

The forward operator and satellite data assimilation

techniques are described in detail by Jones et al. (2013b)

and Jones et al. (2015). In summary, predicted LWP and

IWP results are calculated at each assimilation cycle

using the column-integrated cloud hydrometeor mixing

ratio. For each grid point and model level, the mixing

ratios of each hydrometeor variable (qc, qr, qi, qs, and qg)

are summed to form a total cloud water mixing ratio qa.

For mixed-phase clouds, the total cloud water mixing

ratio is then integrated over the entire atmospheric

TABLE 3.Multiphysics options applied to theGEFS ensemblemembers to initialize ensemblemembers 1–18 of theNEWS-e. This set of

physics options also is applied to the same GEFS ensemble members, in reverse order, to initialize ensemble members 19–36 of the

NEWS-e. All ensemble members use Thompson cloud microphysics and the RAP land surface model. All parameterizations are as in

Part I.

Parameterizations

Radiation

Member Cumulus PBL Shortwave Longwave

1 Kain–Fritsch YSU Dudhia RRTM

2 YSU GCM version of the

Rapid Radiative Transfer

Model (RRTMG)

RRTMG

3 MYJ Dudhia RRTM

4 MYJ RRTMG RRTMG

5 Mellor–Yamada–Nakanishi–

Niino (MYNN)

Dudhia RRTM

6 MYNN RRTMG RRTMG

7 Grell Yonsei University (YSU) Dudhia RRTM

8 YSU RRTMG RRTMG

9 MYJ Dudhia RRTM

10 MYJ RRTMG RRTMG

11 MYNN Dudhia RRTM

12 MYNN RRTMG RRTMG

13 Tiedtke YSU Dudhia RRTM

14 YSU RRTMG RRTMG

15 MYJ Dudhia RRTM

16 MYJ RRTMG RRTMG

17 MYNN Dudhia RRTM

18 MYNN RRTMG RRTMG
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column and divided by the gravitational acceleration

constant to calculate the predicted IWP value. A similar

value qliq is generated from only the liquid-phase hy-

drometeors for comparison with LWP retrievals. For all

clouds, the vertical observation height of the cloud layer

at each observation location is defined by the average of

CTP and CBP with a 6-km vertical localization radius

applied surrounding the center of the cloud. Clear-sky

(CWP5 0 kgm22) retrievals are also assimilated except

that the vertical observation height and localization ra-

dius remain undefined. Both cloudy and clear-sky re-

trievals have a horizontal localization radius of 40 km

applied. A larger six standard deviation outlier thresh-

old is applied when assimilating retrievals. Testing

showed that using a larger outlier threshold for satellite

retrievals proved more effective than using the more

restricted threshold of three standard deviations.

Unlike Jones et al. (2015), this initial real-time data

observation processing system was fashioned in such a

way that removing CWP observations in heavy pre-

cipitation regions was not practical, potentially leading

to underestimates of CWP in these areas. Comparisons

of GOES satellite CWP retrievals to CloudSat radar

data indicate that the retrieval algorithm significantly

underestimates CWP for deep convective clouds

(Smith 2014). To partially compensate for this, the

CWP forward operator includes hard limits for the

prior and posterior ensemble mean LWP and IWP.

The limits are 4.5 kgm22 for IWP and 3.5 kgm22 for

LWP, which roughly correspond to the maximum

possible retrieval values. In heavy precipitation re-

gions, the prior ensemble mean IWP or LWP and the

corresponding observation will have similar values and

while the observation will be assimilated, its impact will

be small as a result of the small innovation resulting

from the limits in the forward operator. However, dif-

ferences in the distribution of LWP and IWP between

retrievals and model output can still result in some

biases remaining even after application of the limits

defined above.

Both satellite and radar observations are correlated

with the hydrometeor characteristics of the atmosphere.

While satellite observations are more sensitive to non-

precipitating clouds and radar observations are more

sensitive to those that are precipitating, their observa-

tions and corresponding observation errors are not

completely independent of each other. As a result, as-

similating satellite and radar observations at the same

location may not always be beneficial. For example, if

radar observations indicate precipitation in an area

where the satellite retrieval indicates a low CWP cloud,

it is likely that the resulting model analysis where

both are assimilated will underestimate the actual

precipitation. If radar data indicate light or no pre-

cipitation where high CWP retrievals occur, then a

positive bias in precipitation is likely to result. Future

research will analyze potential data-thinning strategies

to reduce these apparent biases present in the current

model configuration.

The radar-only (RAD) experiments described in Part I

assimilate positive reflectivity, clear-air (0 dBZ) re-

flectivity, and radial velocity from the three WSR-88Ds

that provide the greatest coverage over the storm-scale

domain. This research compares the RAD experiments

for each event to similar experiments that assimilate

LWP, IWP, and clear-sky (CWP 5 0 kgm22) observa-

tions in addition to positive reflectivity and radial ve-

locity. The RADSAT experiments do not assimilate

clear-air reflectivity since one goal of this research is to

replace 3D clear-air reflectivity observations with a

much smaller number of 2D satellite cloud-free obser-

vations. Both observation types act to decrease hydro-

meteor and moisture concentrations in the model

analysis; however, assimilating multiple clear-air re-

flectivity observations in a clear-sky environment can

result in an unwanted dry bias in the model analysis.

Assimilating a single satellite-derived cloud-free obser-

vation still removes anomalous precipitation and cloud

cover, but does not repeatedly ‘‘hit’’ the model at a

particular location, reducing the potential dry biases. In

addition, not assimilating clear-air reflectivity reduces

the overall number of observations by 50%, resulting in

an assimilation that runs up to 50% faster. The increase

in model performance can make the difference in

whether or not 15-min cycling can be accomplished in

real time with reasonable computing resources. Still,

clear-air reflectivity can be useful where clouds exist in

thin layers to prevent the model from overdeveloping

these clouds into precipitation. To test this hypothesis,

clear-air reflectivity is assimilated into two extra exper-

iments (RAD0SAT) for the 19May and 27April events.

4. Observation diagnostics

To assess how radar and satellite observations are

being assimilated, observation diagnostics in the form of

mean innovation (e.g., bias), root-mean-square in-

novation (RMSI), and total spread (TSPRD) are cal-

culated for LWP and IWP retrievals at each assimilation

cycle (Dowell et al. 2004; Dowell and Wicker 2009;

Dowell et al. 2011; Yussouf et al. 2013; Part I). In-

novation and RMSI are calculated by taking the differ-

ence between prior and posterior fields H(x) and

comparing against observations y:

Innov5 y
n
2H(x

n
) and (1)
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RMSI5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
�
N

n50

Innov
n

!2

=N

vuut , (2)

where N represents the number of observations assimi-

lated for a particular observation type.

Ensemble spread represents the average difference

between the individual ensemble forecasts of a quantity

and the ensemble forecast of a quantity:
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where E is the total number of ensemble members.

Total variance is the sum of the prior ensemble variance

plus the observation error variance for each observation type

whose square root defines theTSPRD.The consistency ratio

(CR) represents the ratio of prior ensemble variance RMSI2

to the square of TSPRD. A CR near 1.0 indicates that the

ensemble variance is a good approximation of the error

variance for a given observation error (Dowell et al. 2004;

Aksoy et al. 2009; Dowell and Wicker 2009). Small CR

values indicate an ensemble with insufficient spread, while

large CR values indicate an ensemble with excessive spread

due to larger than optimum observation errors.

CR, innovation, RMSI, and TSPRD are provided at

each assimilation cycle for IWP and LWP observations

for the 2013 events in Fig. 2. The number of available

FIG. 2. The 2013 innovation, RMSI, TSPRD, and CR for LWP1 IWP at 15-min intervals during the assimilation

period for the (a),(b) 19 May, (c),(d) 20 May, and (e),(f) 31 May 2013 events. Also present are the total number of

observations available at each assimilation cycle and the number of those that are actually assimilated.
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observations and the subset of those that are assimilated

are also provided. For the 19 and 20 May events, RMSI

increases from near zero and eventually stabilizes near a

value of 0.6 kgm22 after 2 h of data assimilation

(Figs. 2a,c). TSPRD shows a similar increase as a func-

tion of time. The mean innovation slowly decreases,

indicating that as storms develop and become more

widespread, the forecast LWP and IWP from the model

are higher than the retrieved observations despite the

limits included in the forward operator for model-

simulated LWP and IWP values. The 31 May case is

similar, but generates a relatively constant innovation,

RMSI, and TSPRD as a function of time (Fig. 2e). After

;2 h of data assimilation, the CR stabilizes at greater

than 0.6 for the 19 and 31May events and to between 0.8

and 1.1 for the 20 May event (Figs. 2b,d,f). For all 2013

events, between 85% and 90% of available observations

pass outlier threshold tests and are assimilated.

Figure 3 shows the corresponding statistics for the

three 2014 cases. In general, the same trends are ap-

parent with one major exception. At the beginning of

the 27 April event, only 75% of the total number of

observations are assimilated during the first cycle at

2000 UTC (Fig. 3b). The total percent of available

observations assimilated increases to near 90% by

2130 UTC, but CR increases to near 2.0 at the same

time before decreasing to only 1.4 afterward, corre-

sponding to excess spread. These statistics indicate

that model cloud features and the observations differ

significantly at 2000 UTC and, while the assimilation

FIG. 3. As in Fig. 2, but for the 2014 events. Note that the 11 May event does not assimilate LWP data.
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does close this gap, the differences remain, potentially

leading to adverse effects on the model forecasts. It

should be noted that only IWP data are assimilated

into the 11 May case because of a processing error

discovered in that event’s LWP retrievals. Thus, the

number of observations for this case begins at a low

number and increases as the anvils associated with the

developing storms become larger (Fig. 3f). For all

cases, the impacts to reflectivity and radial velocity

observation diagnostics are small when satellite re-

trievals are assimilated. The total spread for the re-

flectivity increases by approximately 10% while little

change occurs for radial velocity.

5. Selected analyses and forecasts from each event

Since it would be impossible to discuss every analysis

and forecast generated as part of this research, a single

analysis time and the corresponding 1-h forecasts initi-

ated from those times that are generally representative

of the event are discussed in detail.

a. 19 May 2013

Two violent tornadoes were generated from two

separate supercells on 19 May (Table 1). The first

storm (No. 1) generated a weak tornado at;2120 UTC

followed by a much stronger tornado beginning at

2141 UTC. Ensemble mean 2-m temperatures for each

experiment are provided in Fig. 4 showing very warm air

in western Oklahoma behind the dryline with cooler

surface temperatures to the east. The impacts of assim-

ilating satellite data are apparent when comparing sur-

face temperature between experiments. RADSAT and

RAD0SAT generate warmer temperatures in north-

east Texas and southeast Oklahoma at 2045 UTC

(Figs. 4a–c). These differences are a result of the

changes in cloud characteristics within the model due to

the assimilation of the satellite data. These changes can

be visualized using the downward shortwave flux vari-

able (SWDOWN), which is a measure of the amount of

solar radiation reaching the surface. High values in-

dicate clear-sky conditions while lower values indicate

the presence of clouds, at least during daylight hours.

This variable is also measured by the Oklahoma Meso-

net, but is not assimilated, allowing for an independent

comparison of the model to observations. Large differ-

ences in SWDOWN are evident between the RAD and

RADSAT experiments. The cloud shield associated

with the central Oklahoma storm is also too small, as

indicated by the low SWDOWN observations on the

south side of this storm. The corresponding GOES-13

visible image also shows a larger anvil than present

in RAD while showing few clouds in northeast Texas

and central Oklahoma (Fig. 4g). Both RADSAT and

RAD0SAT match the SWDOWN observations and

visible imagery much better than does RAD

(Figs. 4b,c,e,f,g). The cloud cover in northeast Texas is

removed, allowing for the warmer surface temperatures.

Also, the linear band of clouds ahead of the storm is

evident in the SWDOWN analysis for these experi-

ments. Overall, the addition of clear-air reflectivity does

not cause large changes to the surface temperature and

SWDOWN compared to RADSAT. However, RAD0-

SAT does return the smaller anvil size present in the

RAD experiment. The impact of assimilating both

cloud-free satellite observations and clear-air re-

flectivity is to increase the influence of ‘‘clear’’ obser-

vations relative to ‘‘cloud’’ observations, decreasing the

cloud fields along the edges of the storms.

Since Oklahoma Mesonet observations are available

at 5-min intervals, it is possible to quantitatively com-

pare surface temperature and SWDOWN analyses and

forecasts with observations at each forecast interval,

providing a quantitative estimate of the impacts of as-

similating satellite data. Root-mean-square errors

(RMSEs) for temperature and SWDOWN were com-

puted over 105 mesonet sites in the domain for each

member and forecast time. The mean and standard de-

viation of RMSE were then computed. The standard

deviation of RMSE represents the degree of spread

present in the forecast from member to member. It

should be noted that the standard deviation of the

RMSE is not necessarily an indicator of statistical sig-

nificance. To assess RMSE over multiple forecast pe-

riods, the RMSE for forecasts initiated between 2030

and 2200 UTC at 15-min intervals were averaged at a

particular forecast time, creating a single time series for

RMSE. Standard deviation was averaged in the same

manner to provide an overall estimate of spread.

Figures 5a and 5b show surface temperature and

SWDOWNRMSEs as functions of forecast time for the

RAD, RADSAT, and RAD0SAT experiments. For

surface temperature, the RMSE for RAD increases

from 1.38C at the analysis time to near 3.08C after 1 h,

with the overall standard deviation also increasing to

over 61.08C. RADSAT and RAD0SAT begin with a

slightly higher RMSE, but the increase as a function of

time is much less than for RADmaxing out below 2.58C.
The standard deviations are also much smaller, in-

dicating that the variability in surface temperature

among members is much smaller once LWP and IWP

are assimilated. Adding clear-air reflectivity, which is

present in both cloudy and cloud-free areas, had little

impact on the surface temperature errors. RAD also

generates the highest RMSEs for SWDOWN with the

RADSAT RMSEs being 20–40Wm22 lower for all
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forecast times (Fig. 5b). The standard deviation or

RMSE is also greater for RAD, but not to the degree it is

for surface temperature. RAD0SAT generates RMSEs

for SWDOWN approximately 10Wm22 higher than

doesRADSAT, which is consistent with the reduction in

cloud cover due to assimilating both cloud-free satellite

data and precipitation-free observations at the same

locations.

The large differences in the thermodynamic and cloud

properties of each experiment are likely to influence the

forecasting of storms within the model. Each experi-

ment generates a good match between the ensemble

mean 3km above ground level (AGL) reflectivity and

the 3 km AGL reflectivity from the multiradar, multi-

sensor (MRMS) product indicated by the 40-dBZ ob-

servation contour at 2045 UTC (Figs. 6a–c). RAD

has the best match while RADSAT is similar near

the storm cores, but also generates areas of spurious

reflectivity in regions where clouds exist, indicating

the overproduction of light precipitation (not shown).

FIG. 4. Ensemble mean (a)–(c) 2-m surface temperature and (d)–(f) downward shortwave flux analyses for RAD, RADSAT, and

RAD0SAT experiments at 2045UTC 19May. (g)GOES-13 visible at this time is provided for comparison. Wind barbs are plotted on the

surface temperature panels with values of 5m s21 indicated by short barbs and values of 10m s21 indicated by long barbs. If wind speed is

less than 5m s21, then no barbs are plotted.
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Introducing clear-air reflectivity eliminates the spurious

precipitation, but also appears to weaken the smaller

storms in the domain. The differences between the ex-

periments become even more apparent 30min into the

forecast at 2115 UTC. RADSAT generates higher en-

semble mean reflectivity compared to RAD for both

areas of convection while the spurious precipitation in

RADSAT has disappeared (Figs. 6d,e). Conversely,

RAD0SAT weakens the central Oklahoma storm

significantly (Fig. 6f). By 60min into the forecasts

(2145 UTC), corresponding to near the time of the

touchdown of the violent tornado, all experiments

forecast a storm somewhat north of the observations, with

RADSAT having the highest reflectivity and RAD0SAT

having the lowest (Figs. 6g–i).

To indicate the location of low-level rotation oc-

curring within forecast convection, the probability of

maximum vertical vorticity . 0.004 s21 below 2 km

AGL is computed for the 1-h forecast period. These

probabilities represent the fraction of ensemble

members in which the vertical vorticity exceeds

0.004 s21 on at least one model level below 2 km AGL

at a given time and horizontal grid point as defined

by Part I. Vorticity fields are first calculated at the

ensemble analysis time used to initialize the forecast,

and at 5-min intervals thereafter through the forecast

end time. The maximum probability recorded at each

horizontal grid point is shown for forecasts initiated

at 2045 UTC for each experiment in Figs. 6j–i. In

central Oklahoma, each experiment places the

FIG. 5. RMSE for ensemble 2-m surface temperature and downward shortwave flux for five sets of 1-h forecasts (seven for 19 May) for

(a),(b) 19 May, (c),(d) 20 May, and (e),(f) 31 May 2013 verified against OKMesonet observations. Error bars indicate standard deviation

of RMSE over each ensemble member for a particular forecast time.
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highest probability of low-level vorticity along and to

the north of the tornado track denoted by the blue

outline associated with storm 1. RADSAT gener-

ates somewhat higher vorticity probabilities than

RAD, with both having similar tracks (Figs. 6j,k).

RAD0SAT generates the lowest probabilities, con-

sistent with the weaker reflectivity forecasts de-

scribed above.

FIG. 6. Ensemble mean 3 kmAGL reflectivity at 2045UTC 19May 2013 for (a) RAD, (b) RADSAT, and (c) RAD0SAT experiments. The

(d)–(f) 30-min and (g)–(i) 1-h ensemble mean 3-km reflectivities are provided. The black contour indicates area where MRMS 3-km radar

reflectivity . 40 dBZ at the analysis or forecast time. Probability of 0–2-km vertical vorticity . 0.004 s21 for 0–1-h forecasts initiated at

2045 UTC 19 May for the (j) RAD, (k) RADSAT, and (l) RAD0SAT experiments. Blue lines indicate known tornado tracks in the area.

FEBRUARY 2016 JONE S ET AL . 309

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 07:39 PM UTC



While the qualitative comparisons of reflectivity and

vorticity between the experiments indicate that as-

similating satellite observations improves the forecast

of supercell convection, it is also important to assess

this question in a quantitative manner. The bias (ratio

of the number of yes observations to yes forecasts) and

equitable threat score (ETS; Wilks 2006) are computed

for the ensemble mean 3 km AGL reflectivity averaged

over 1-h forecasts initiated every 15min between 2030

and 2200 UTC 19 May for the RAD, RADSAT, and

RAD0SAT experiments. For each member, if the ex-

periment generates reflectivity greater than 40 dBZ

within 63 km of the MRMS reflectivity greater than

40 dBZ at a particular time, this is considered a ‘‘hit.’’ If

the experiment generates reflectivity greater than

40 dBZ and this threshold is not exceeded in the ob-

servations, then it is considered a false detection. Fi-

nally, if neither the observations nor the experiment

exceed this threshold, then it is considered a correct

null forecast. The goal is to generate forecasts where

hits are maximized, but false detections are limited.

The mean and standard deviation of bias and ETS

among each member are then computed for each

forecast time. Finally, the bias and ETS mean and

standard deviation for a particular forecast time are

averaged for all sets of experiments to create a time

series of bias and ETS results that reflects the skill over

multiple forecast periods.

For all experiments, ETS generally decreases as a

function of time as model error increases (Fig. 7a).

Much of the decrease in skill is due to the increasing

displacement error between the location of the fore-

cast convection and reflectivity observations. Both

RADSAT and RAD0SAT maintain higher ETS scores

throughout the entire forecast period with the greatest

improvements occurring for 30–60-min forecasts. The

advantage of RADSAT increases over time as persis-

tence plays a decreasing role and the importance of

thermodynamic conditions related to cloud coverage

increases. Assimilating satellite observations affects

these conditions by increasing or decreasing the cloud

cover in the model, which has downstream impacts on

atmospheric moisture content and temperature. Corre-

sponding bias statistics for the same set of forecasts are

shown in Fig. 7b with both RADSAT and RAD0SAT

generating values significantly less than 1.0, indicating

an overall underforecast by these experiments. RAD

generates average biases nearer to 1.0, but the vari-

ability in bias as a function of ensemble members is

much greater compared to RADSAT and RAD0SAT.

These statistics indicate that RAD is generating addi-

tional grid points greater than 40dBZ when compared

with the other experiments. However, they are displaced

from and potentially not associated with any observed

convection.

b. 20 May 2013

Similar atmospheric conditions that generated the

19 May tornadoes remained in place over central

Oklahoma on 20 May and generated another round of

tornadic storms. This event produced a violent tornado

in Moore, Oklahoma, that touched down at approxi-

mately 1956 UTC and continued on an eastward path

for approximately 40min (Table 1). This storm formed

at the intersection of a dryline and weak frontal

boundary, which increased its low-level shear compared

to other storms farther south. The ensemble mean sur-

face temperature ;40min prior at 1915 UTC indicates

warm air and westerly winds in southwestern Oklahoma

with cooler air to the north and east (Figs. 8a,b). Both

RAD and RADSAT generate similar overall features,

but some differences are apparent. First, RADSAT is

warmer in northeast Texas compared to RAD, where

generally cloud-free conditions exist (Fig. 8e). As oc-

curred for the 19 May event, RAD is generating spuri-

ous cloud cover in this region as shown by the decrease

in SWDOWN compared to RADSAT (Figs. 8c,d).

Another difference occurs in eastern and northeastern

Oklahoma, where a band of cooler surface temperatures

exists in RADSAT. This cool band is associated with a

band of clouds observed in the visible imagery that is

assimilated into this experiment. RAD fails to correctly

analyze this feature since radar observations alone

cannot provide information on nonprecipitating clouds.

Surface temperature and SWDOWN RMSE are cal-

culated and averaged over forecasts initiated at 1900,

1915, 1930, 1945, and 2000 UTC (Figs. 5c,d). RADSAT

generates the lowest surface temperature RMSE 10min

into the forecast period. However, the overall im-

provement remains small, on the order of 0.1K. Stan-

dard deviations among the ensemble members are also

similar for both experiments (0.28C), which differs from

the 19 May experiments where the temperature stan-

dard deviation for RAD increases rapidly compared to

RADSAT. RADSAT also decreases SWDOWN

RMSE on the order of 20Wm22 compared to RAD,

further indicating that the assimilation of LWP and

IWP is improving the overall cloud properties in the

model analysis leading to better forecasts of these clouds

and the corresponding near-surface thermodynamic

conditions.

Ensemble mean 3-km reflectivity at 1915 UTC shows

several developing supercells (Figs. 9a,b). Storm 1 goes

on to produce the Moore tornado at 1956 UTC while

storm 2 generates a couple of brief, weak tornadoes soon

after the analysis time. Both experiments correctly
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analyze the primary storm cores, with RADSAT gen-

erating slightly higher reflectivity values for storm 1

(Fig. 9b). RADSAT maintains higher ensemble mean

reflectivity 30min into the forecast at 1945 UTC for

both storms (Figs. 9c,d). The higher ensemble mean

reflectivity generated by RAD remains at 2015 UTC

(Figs. 9e,f). Finally, RADSAT appears to better

analyze a developing storm in the southern portion of

the domain.

The differences between the 0- and 2-km vorticity

probability swaths from RAD and RADSAT are con-

sistent with the reflectivity forecasts described above.

FIG. 7. (left) ETS and (right) bias for 3 km AGL ensemble mean reflectivity forecasts compared to 3 km AGL MRMS reflectivities

calculated for the 2013 events. Bias and ETS shown represents the average bias and ETS for five (seven for 19 May) sets of 0–1-h forecast

periods to evaluate model performance over a multiple forecast initiation times. Error bars indicate standard deviation of ETS over each

ensemble member for a particular forecast time.
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FIG. 8. Ensemble mean (a),(b) 2-m surface temperature and (c),(d) downward shortwave flux for the RAD and

RADSAT experiments at 1915 UTC 20 May. (e) GOES-13 visible at this time is provided for comparison. Oth-

erwise, as in Fig. 4.
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FIG. 9. Ensemble mean 3 km AGL reflectivity at 1915 UTC 20 May 2013 for (a) RAD and (b) RADSAT

experiments. The (c),(d) 30-min and (e),(f) 1-h ensemble mean 3-km reflectivities are provided. Otherwise,

as in Fig. 6.
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RADonly generates a 40%or less probability of 0–2-km

vorticity greater than 0.004 s21 whereas RADSAT

generates probabilities in excess of 60% for storm 1

(Figs. 9g,h). Conversely, RAD generates slightly higher

probabilities for storm 2 during the first 15min of the

forecast period with both experiments being similar af-

terward. One potential explanation for this result is that

storm 2 is better organized in RAD at the analysis time,

but the organization rapidly improves in RADSAT as a

result of the impacts of assimilating satellite observa-

tions outside the storm cores.

ETS and bias skill scores for 3-km reflectivity were

computed for forecasts started at 1900, 1915, 1930, 1945,

and 2000 UTC 20 May and averaged for each forecast

time (Figs. 7c,d). At forecast times beyond 15min,

RADSAT generates higher ETS scores compared to

RAD, which is consistent with the qualitative discussion

above. Both experiments generate a low bias indicating

underforecasting, with RAD generating slightly lower

biases and greater overall variability compared

to RADSAT.

c. 31 May 2013

The 31 May event was characterized by a very large

tornado that began at 2305 UTC associated with the

southernmost supercell in a storm complex that de-

veloped in central and north-centralOklahoma (Table 1).

One hour prior to the development of the tornado at

2200 UTC, very warm surface temperatures are analyzed

in western Oklahoma and north Texas with cooler con-

ditions to the east (Figs. 10a,b). Larger differences are

apparent in the SWDOWN analysis with RAD generat-

ing much lower values across much of eastern Oklahoma

compared to RADSAT where visible satellite imagery

indicates only sporadic cloud cover (Figs. 10c–e). The

decreased coverage of clouds in RADSAT reduces sur-

face temperature RMSE for 1-h forecasts generated

starting at 1900, 1915, 1930, 1945, and 2000 UTC by ap-

proximately 0.48C over much of the forecast period

(Fig. 5e). The overall standard deviation of RMSE is also

slightly smaller, but not to the degree observed in the

19 May experiment. RADSAT also generates smaller

RMSEs for SWDOWN compared to RAD, consistent

with the other cases (Fig. 5f). Overall, SWDOWNRMSE

decreases as a function of time as the magnitudes of

SWDOWNbegin to decrease as the sun sets, reducing the

overall shortwave flux reaching the surface.

Important differences are also apparent when com-

paring RAD and RADSAT reflectivity forecasts.

Figure 11 shows ensemble mean 3-km reflectivity ana-

lyzed at 2200 UTC and for 30-min and 1-h forecasts at

2230 and 2300 UTC, respectively, for both experiments.

Both experiments correctly analyze the location of strong

convection, with RADSAT generating some excess light

precipitation along the edges. However, RADSAT gen-

erates higher ensemble mean reflectivity 30min into the

forecast with several values greater than 50dBZ present

(Figs. 11c,d). The same pattern continues to 2330 UTC

with the main storm being well maintained by both ex-

periments and RADSAT generating some spurious

convection to the south (Figs. 11e,f). Both experiments

generatemoderate to high probability of 0–2-km vorticity

greater than 0.004 s21 west of and along the future tor-

nado track and forecast the southeastern turn that oc-

curred with this storm just prior to the formation of the

tornado. The primary difference between the experi-

ments is that RADSAT generates vorticity probabilities

greater than 80% over a well-defined swath whereas

RAD generates only a few small areas of probability

greater than 60% and is also stronger with the left split

to the north. RADSAT does generate several small

moderate-probability vorticity swaths to the south of the

primary storm corresponding to the stronger storms ap-

parent in the reflectivity forecasts. The spurious convec-

tion in southern Oklahoma is a result of IWP associated

with towering cumulus being assimilated, introducing

a convective initiation signal into the model. Since

RADSAT does not assimilate clear-air reflectivity, no

mechanism exists to suppress this signal.

The ETS and bias for 3-km reflectivity averaged over

forecasts initiated at 2200, 2215, 2230, 2245, and

2300 UTC 31 May show a pattern similar to the previ-

ous events (Figs. 7e,f). Both experiments generate high

ETS scores (.0.4) at the analysis time and decrease

thereafter. RAD performs slightly better during the first

15min of the forecast period, while RADSAT performs

better for the remainder of the forecast period. How-

ever, the standard deviation in ETS is quite large and

like the 20 May event, significant overlap in the en-

semble distribution of ETS exists between both experi-

ments. Biases are similar for both experiments and

slowly increase with time, indicating a model that ini-

tially underforecasts reflectivity, but improves in storm

coverage as time goes on.

d. 27 April 2014

The 27 April and following 28 April events are more

characteristic of lower instability, high vertical wind shear

events often found outside the southern plains (Table 1).

On 27 April, several areas of severe convection were

present in eastern Oklahoma, and central and northern

Arkansas. The storm-scale data assimilation period be-

gins at 2000 UTC, during which significant convection is

ongoingwithin the domain, unlike the isolated convective

cases from 2013. A supercell present in west-central

Arkansas generated a violent tornado at 0006 UTC.
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Surface temperature analyses at 2330 UTC for both the

RADandRADSATexperiments show a large area of less

than 208C temperatures in northwestern Oklahoma and

southern Missouri associated with ongoing precipitation.

The RAD0SAT experiment that assimilates clear-air

reflectivity along with satellite observations was also

run for this event and generates similar surface tem-

peratures as RADSAT (Figs. 12a–c). The differences

FIG. 10. As in Fig. 8, but for 2200 UTC 31 May 2013.
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FIG. 11. As in Fig. 9, but for forecasts initiated at 2200 UTC 31 May 2013.
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between the experiments, especially in Arkansas, are

generally small. Somewhat larger differences exist in the

SWDOWN analysis with RADSAT (and RAD0SAT)

better analyzing the clear sky behind the ongoing con-

vection (Figs. 12d–f). RADSAT also appears to reduce

cloud cover over southern Arkansas compared to RAD.

The SWDOWN values for all experiments are much

lower (,300Wm22) compared to the previous events

since this event occurred earlier in the year and the

analysis time is later, meaning much less incoming solar

radiation. Qualitative comparison of the SWDOWN

analyses with visible satellite imagery at the same times

(Fig. 12g) indicates that from a cloud-coverage perspec-

tive, assimilating LWP and IWP improves the appear-

ance of the initial cloud fields. Unfortunately, the spatial

and temporal resolutions of available surface observa-

tions for this and the following 2014 events do not allow

for quantitative comparisons similar to those conducted

for the 2013 events.

Whether or not the differences in cloud coverage

observed above lead to an improved forecast of severe

convection can be determined by analyzing the forecast

FIG. 12. As in Fig. 4, but for 2330 UTC 27 Apr 2014.
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ensemble mean 3-km reflectivity at 2330 UTC and

30-min and 1-h forecasts thereafter (Fig. 13). All three

experiments correctly analyze the location of the soon-

to-be-tornadic supercell (storm 1) while also analyzing

much of the other ongoing convection in the domain.

RADSAT differs from RAD in that it generates much

larger areas of light precipitation outside the storm

cores and even a separate area of precipitation south of

the supercell that is not present in RAD or reality

(Fig. 13b). This entire area is covered by cirrus clouds

that generate high IWP retrievals, which upon assimi-

lation, act to increase moisture and hydrometeor

FIG. 13. As in Fig. 6, but for forecasts initiated at 2330 UTC 27 Apr 2014.
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concentrations in the model analysis after each assimi-

lation cycle, eventually leading to precipitation in the

absence of an observation type such as clear-air re-

flectivity to suppress this impact. Returning clear-air re-

flectivity to the set of observations in RAD0SAT

removes much of the spurious precipitation while main-

taining the overall cloud coverage of RADSAT (Figs. 12c

and 13c). RAD maintains a core of greater than 50-dBZ

reflectivity 30min into the forecast (Fig. 13d) that re-

mains discrete after 1h (Fig. 13g). Conversely, RADSAT

quicklyweakens this stormand it becomes hard to discern

from the surrounding convection after 1h (Figs. 13e,h).

RAD0SAT does not do much better despite correctly

reducing the light-to-moderate precipitation outside the

observed areas of convection (Figs. 13f,i).

The probability of 0–2 km vorticity greater than

0.004 s21 also differs significantly between each experi-

ment (Figs. 13j–l). RAD generates a long swath of

probabilities greater than 60% southwest of the begin-

ning of the tornado track with lower probabilities ex-

tending well into and slightly north of the tornado track.

RADSAT generates a much smaller, and lower-

probability, swath consistent with the poor ensemble

mean reflectivity forecasts. The spurious precipitation is

likely reducing model instability, hindering further de-

velopment of the supercell in the model. RAD0SAT

improves the vorticity swath significantly though it re-

mains slightly weaker than the RAD experiment.

The 0–1-h averaged ETS initiated from 2300, 2315,

2330, 2345, and 0000 UTC is consistent with these

observations: RADSAT generally weakened high-

reflectivity regions faster than RAD, yielding a consis-

tently lower ETS (Fig. 14a). RAD0SAT increases ETS

values relative to RADSAT, but they remain below

those generated by RAD. Corresponding bias statistics

indicate that RADSAT produced larger areas of re-

flectivity greater than 40 dBZ compared to the other

experiments (Fig. 14b). For both RADSAT and

RAD0SAT, bias increases as a function of forecast

time, while RAD only generates a small increase.

The RADSAT and RAD0SAT biases are near 1.0 by

the 1-h forecast time, but the location of the convec-

tion is incorrect, leading to large false alarm values

(not shown).

e. 28 April 2014

A supercell located on the southern edge of a large

convective complex generated a violent tornado in

central Mississippi that touched down at approximately

2051 UTC and remained on the ground for approxi-

mately 1 h (Table 1). At 2045 UTC, both experiments

analyze relatively cool surface temperatures corre-

sponding to ongoing cloud cover and precipitation over

much of northern Mississippi (Fig. 15). Overall, the dif-

ference in surface temperature between the experiments

is small, with RADSAT being slightly cooler in central

Mississippi and warmer to the south (Figs. 15a,b). Much

larger differences are apparent in the SWDOWN ana-

lyses, with RADSAT generating higher values both be-

hind and ahead of the ongoing convection (Figs. 15c,d).

RAD appears to generate spurious cloud cover in what

should be limited cloud cover regions as indicated by

visible imagery at this time (Fig. 15e). Assimilating

cloud-free satellite observations clearly has a large im-

pact on the model cloud analysis. IWP observations are

less important in this case, since the model is already

generating high values on its own in areas of deep

convection.

Three separate supercells are ongoing and are analyzed

by both experiments at 2045 UTC (Figs. 16a,b). The

tornadic supercell (storm 1) is the southernmost storm in

the domain at this time. As with the 27 April event,

RADSAT generates muchmore light precipitation in the

areas surrounding the main storms since clear-air re-

flectivity is not being assimilated to suppress this activity.

The ensemble mean 3-km reflectivity results for 30-min

and 1-h forecasts beginning at 2045 UTC show that while

both experiments maintain an isolated storm corre-

sponding to the observations, RADSAT generates

somewhat lower overall ensemble mean reflectivity

(Figs. 16c–f). The 0–2-km vorticity swaths show a similar

trendwith both experiments generating greater than 80%

probabilities just southwest of the tornado touchdown

location. Probabilities decrease somewhat faster in

RADSAT, which is consistent with the lower ensemble

mean reflectivity generated. Interestingly, RADSAT

performs better with the developing convection in the

southwestern potion of the domain at the 1-h forecast

time by generating higher reflectivity values near the lo-

cations of the observed storms while most members of

RAD fail to generate reflectivity greater than 35dBZ in

this region. ETS results averaged for 1-h forecasts initi-

ated at 2000, 2015, 2030, 2045, and 2100 UTC show that

RAD has slightly higher skill for the first 20min of the

forecast period, while RADSAT is higher for longer

forecasts (Fig. 14c). RADSAT generates a somewhat

higher bias, consistent with the greater coverage of pre-

cipitation observed in the forecasts (Fig. 14d).

f. 11 May 2014

The final event analyzed as part of this study occurred

on 11 May 2014 in Nebraska during which a tornadic

supercell rapidly developed along a frontal boundary

generating a weak tornado at 2036 UTC and a much

stronger tornado beginning at 2050 UTC (Table 1). This

supercell eventually grew into a mesoscale convective
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system that produced widespread severe weather in

Iowa, which is described in detail in Part I. However,

this research focuses on the early tornadic phase of de-

velopment. The location of the front is evident in both

experiments at 2100 UTC with ensemble mean surface

temperature showing a southwest-to-northeast-oriented

sharp gradient (Figs. 17a,b). RADSAT is generally

warmer in the eastern portion of the domain and cooler

in the southwest. The SWDOWN analyses shows why

this difference is present. Both experiments generate a

cloud shield associated with the tornadic storm in

Nebraska with a large area of stratiform cloud cover

behind the front (Figs. 17c,d). However, RAD also gener-

ates significant cloud cover east of the ongoing convection,

reducing SWDOWN compared to RAD. Visible imag-

ery at this time shows no extensive cloud coverage in this

area (Fig. 17e). RADSAT also better analyzes the de-

veloping convection in northern Kansas, generating a

FIG. 14. As in Fig. 7, but for (a),(b) 27 Apr, (c),(d) 28 Apr, and (e),(f) 11 May 2014 events.
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SWDOWN analysis more consistent with observations

compared to RAD.

Ensemble mean 3-km reflectivity at 2100 UTC shows

that both experiments analyze the tornadic storm in

Nebraska well (Figs. 18a,b). As with previous events,

RADSAT generates areas of light precipitation sur-

rounding the storm core not present in RAD. How-

ever, RADSAT also correctly analyzes the storms

FIG. 15. As in Fig. 8, but for 2045 UTC 28 Apr 2014.
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FIG. 16. As in Fig. 9, but for forecasts initiated at 2045 UTC 28 Apr 2014.
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developing in Kansas. Similar trends are evident in the

30-min forecast at 2130 UTC with the tornadic storm

still being analyzed well by both experiments while

RADSAT does better with the southern storms

(Figs. 18c,d). The 1-h forecast at 2200 UTC shows sim-

ilar results. However, the 0–2-km vorticity probability

swath paints a somewhat different picture. RAD gen-

erates probabilities greater than 80% initially that

FIG. 17. As in Fig. 8, but for 2100 UTC 11 May 2014.
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FIG. 18. As in Fig. 9, but for forecasts initiated at 2100 UTC 11 May 2014.
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slowly decrease with time and are slightly north of the

observed tornado track (Fig. 18g). Conversely,RADSAT

generates a somewhat discontinuous swath with proba-

bilities initially being high, before decreasing and then

increasing again (Fig. 18h). ETSs for 1-h 3-km reflectivity

forecasts initiated at 2030, 2045, 2100, 2115, and

2130 UTC 11 May show that RADSAT has better skill

for almost all forecast times, though the skill for both

decreases as a function of time, and the overall differ-

ences for this event are small (Fig. 14e). A larger differ-

ence exists in the biases, with RAD substantially

underforecasting reflectivity compared to RAD during

the first 30min, after which the biases converge (Fig. 14f).

6. Conclusions

Assimilating IWP and LWP retrievals with radar

reflectivity and radial velocity in the prototype WoF

ensemble system provided mixed results. For the more

isolated cases during 2013 and 11May 2014, assimilating

IWP and LWP improved the cloud analysis, reducing

surface temperature errors in later forecasts. Replacing

clear-air reflectivity with clear-sky satellite observations

also yielded positive results in the clear-sky regions by

reducing anomalous cloud cover present in the radar-

only experiments. The improved thermodynamic con-

ditions often generated higher-probability low-level

vorticity swaths that were better placed when compared

against the observed tornado track. Forecast skill for

reflectivity. 40dBZ is greater for RADSAT compared

to RAD, especially over the 30-min to 1-h forecast pe-

riod for these events.

However, assimilating satellite retrievals produced

some unwanted artifacts. For the 27 and 28 April 2014

events, RADSAT increased cloud and light pre-

cipitation coverage compared to RAD. As a result, the

storms of interest were often analyzed as too weak,

leading to their rapid demise in ensuing forecasts. As-

similating clear-air reflectivity along with satellite ob-

servations into an additional experiment for 27 April

reduced the spurious precipitation to a large degree

while leaving the overall satellite-influenced cloud and

thermodynamic features in place. Still, the resulting

forecast was no better than those from the original RAD

experiment. As discussed in Part I, these high-shear,

lower-CAPE environments that have large areas of

ongoing convection represent the most difficult cases to

forecast and continued research is ongoing on how to

best assimilate remote-sensing observations for these

types of events.While the differences between the RAD

and RADSAT experiments are intriguing and offer

potential conditions in which satellite observations may

improve storm-scale forecasts, the number of case

studies considered in this investigation is not enough to

truly indicate whether or not these differences are sta-

tistically significant.

Several important lessons were learned during the

course of these experiments that will form the basis for

more optimal assimilation of combined radar and satellite

datasets in the future. One consistent result among all the

experiments is that assimilating satellite observations

while not including clear-air reflectivity resulted in areas

of light precipitation where satellite observations in-

dicated thick clouds. Over multiple assimilation cycles,

these clouds eventually produce precipitation since no

suppression mechanism is present. Returning clear-air

reflectivity addressed this problem, but introduced an-

other problem in the 19 May event whereby assimilating

large amounts of clear-air reflectivity and cloud-free sat-

ellite observations slowed the formation of storms and/or

reduced the intensity of ongoing storms. These results

suggest the need for a more robust handling of combined

radar and satellite datasets going forward to remove the

potential for correlated observations and observation er-

rors that cause unwanted impacts on the model analyses

and ensuing forecasts. How best to determine this com-

bination is the focus of ongoing research that hopes to

improve the modest results found in this study.
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